If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-28x-22=0
a = 6; b = -28; c = -22;
Δ = b2-4ac
Δ = -282-4·6·(-22)
Δ = 1312
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1312}=\sqrt{16*82}=\sqrt{16}*\sqrt{82}=4\sqrt{82}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-4\sqrt{82}}{2*6}=\frac{28-4\sqrt{82}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+4\sqrt{82}}{2*6}=\frac{28+4\sqrt{82}}{12} $
| 2e^2×-7=5 | | v+1/8=4 | | 2t+1.2=8.2 | | (2)6x=5x-8 | | 6x×2=5x-8 | | y-6.73=2.94 | | 1/3x-5=2x-35 | | 6x=5x-8÷2 | | (2x-6)+(8x-14)=180 | | 9m-9m+2m=20 | | 6x+34x=9 | | -35u+21=-3u-90 | | =-(5x+1) | | 3u+3=1.2 | | 3(h-13)+1=13 | | 17/13=4/7x | | 〖(x+5)〗^2=10x | | -m-9+6m=-59 | | 7(r-85)=28 | | -4y-5=40y+2 | | -17-5x=28 | | 27=9(c-87) | | q+31=80 | | 3.1d-4.1=-1.8(8d+4) | | (4y-7)(6+y)=0 | | 6=0.006x | | -(7z-32)+20+(-24)=0 | | d+8=8 | | -3.9x=117 | | u-42=-4u-9 | | 2.7(m-13)=8.1 | | 0.6=0.006x |